Государственное бюджетное профессиональное образовательное учреждение Ленинградской области «Кингисеппский колледж технологии и сервиса» структурное подразделение «Детский технопарк «Кванториум»

Рассмотрено педагогическим советом ГБПОУ ЛО «ККТ и С» Протокол от «29 августа» 2022 года № 17 Согласовано: заместитель директора-руководитель «ДТ «Кванториум» «29» августа 2022 г.

Утверждена приказом ГБПОУ ЛО «ККТ и С» от «01» сентября 2022 г. № 56-О

Дополнительная общеразвивающая программа «Промробоквантум»

Углубленный уровень

(90 часов)

Пояснительная записка

Дополнительная общеразвивающая программа «Промробоквантум» разработана на основании Федерального закона от 29.12.2012 № 273-ФЗ «Об образовании в Российской Федерации», Концепции развития дополнительного образования детей до 2030 года.

Направленность программы

Техническая

Актуальность программы

В современном мире очевиден рост зависимости жизни человека от достижений научно-технического прогресса, неотъемлемой частью которого является автоматизация производственных процессов, в том числе, их роботизации. Промышленная робототехника — это инженерная дисциплина, посвящённая созданию и изучению роботов. Робототехника является одной из наиболее востребованных и развивающихся специальностей: большинство её аспектов включено в различные направления Национальной технической инициативы. По мере роста технической сложности инженерных проектов растут как востребованность высококвалифицированных специалистов, так требования к ним: они должны будут обладать самыми передовыми знаниями, навыками и компетенциями. Программа по робототехнике позволит вовлечь школьников в процесс инженерного мастерства, обнаружить и развить их таланты в таких направлениях как мехатроника, искусственный интеллект, программирование и других.

Робототехника опирается на такие дисциплины, как математика, физика, электроника, механика, механотроника, информатика, а также радиотехника и электротехника. Охватывая большой спектр наук, данное направление позволяет освоить самые востребованные компетенции, и использовать их в модернизации действующих систем.

Педагогическая целесообразность программы

Программа «Промробоквантум» - это изготовление роботов, которых конструируют и программируют сами обучающиеся. Педагогическая

целесообразность программы «Промробоквантум» определяется учетом возрастных особенностей обучающихся, широкими возможностями социализации в процессе привития трудовых навыков, пространственного мышления, учет интересов, планов обучающихся с целью их использования в образовательном процессе.

Программа «Промробоквантум» направлена, в том числе, на решение профориентационных задач: внедрение в молодежную среду представлений об инженерно-техническом творчестве как о престижной сфере деятельности, способствующей эффективной реализации личностных жизненных стратегий; формирование устойчивого интереса молодежи к инженерно-техническому творчеству; создание условий для мотивации, подготовки и профессиональной ориентации школьников для возможного продолжения учёбы в ВУЗах и последующей работы на предприятиях по специальностям, связанных с робототехникой.

Программа ориентирована на приобретение школьниками компетенций к сфере проектной, системной, организаторской деятельности, расширение кругозора. Кроме того, теоретические и практические знания по робототехнике значительно углубят знания учащихся по ряду разделов физики, математики и информатики.

Методологической основой программы является системнодеятельностный подход, сочетающийся с различными современными образовательными технологиями, такими как технология развития понятийного мышления, технология исследовательской и проектной деятельности. Применение системно-деятельностного подхода наиболее эффективно способствует формированию универсальных учебных действий.

Цель программы

Цель программы — формирование у школьников интереса и практических навыков, технических знаний в процессе изучения основ электроники, промышленной робототехники посредством кейсовой системы обучения, приобретение базовых компетенций в области программирования,

моделирования и конструирования роботов под конкретные задачи.

Задачи программы

Образовательные:

- сформировать понимание причин и необходимости повсеместной роботизации производств; дать представление о сферах применения промышленных роботов;
- ознакомить с тенденциями в робототехнике и уровнем развития техники и технологий применительно к роботизации производств;
- изучить структуру и функционал промышленных роботов на примере промышленного манипулятора;
- ознакомить и подготовить к использованию технической терминологии, основных понятий электротехники, радиоэлектроники и схемотехники;
- сформировать умение работать с информацией, пользоваться технической литературой;
- познакомить с основами мехатроники и робототехники, правилами сборки, регулировки настройки различных электронных устройств;
- обучить основам и принципам проектирования и конструирования робототехнических устройств, созданию реально действующих моделей роботов;
- научить сравнивать функциональные возможности и методы применения деталей, узлов, информационных систем и устройств роботов;
 - обучить чтению графических изображений, схем;
- обеспечить освоение базовых компетенций передовых технологий в области конструирования, мехатроники, электроники, робототехники, компьютерных технологий;
- познакомить с правилами работы с основными электрическими и измерительными приборами, научить их работать с ними.

Воспитательные:

- развить аккуратность, силу воли, самостоятельность, внимательность, усидчивость, стремление доводить начатое дело до конца;

- сформировать организаторские и лидерские качества;
- сформировать чувство коллективизма и взаимопомощи.

Развивающие:

- способствовать развитию образного, технического, логического, пространственного мышления;
- развить коммуникативную компетентность на основе организации совместной продуктивной деятельности (умения работать над проектом в команде, распределять обязанности, развивать навыки межличностного общения и коллективного творчества, публичных выступлений, докладов);
- научить работать по предложенным инструкциям, модернизировать их, составлять собственные конструкции и модели;
- развить чувство ответственности, инициативы, самостоятельности, тяги к самосовершенствованию;
 - развить творческие способности;
 - обучить навыкам проектной деятельности;
- ознакомить с правилами техники безопасности при работе с высокотехнологичным оборудованием;
 - выработать навыки командной работы;
- ознакомить с техническими профессиями и обеспечить условия профессионального самоопределения;
- развить наблюдательность, внимание, способность к самостоятельному решению возникающих проблем;
 - популяризировать научно-технические знания.

Адресат программы:

учащиеся в возрасте 10-12 лет, интересующиеся конструированием, моделированием и робототехникой.

Количество обучающихся в группе:

12-14 человек

Формы обучения и виды занятий

Программа предполагает свободный выбор форм аудиторных занятий Страница 5 из 15 (беседы, обсуждения, игровые формы работы, практические занятия, формы проектной деятельности), выбор которых обуславливается темой занятия и формой его проведения.

По типу организации взаимодействия педагогов с обучающимися при реализации программы используются личностно-ориентированные технологии обучения (технологии проектной и исследовательской деятельности).

Реализация программы предполагает использование здоровье сберегающих технологий, реализующихся через создание безопасных условий, таких как включение в занятие динамических пауз, периодическая смена деятельности обучающихся; контроль соблюдения обучающимися правил работы на ПК; создание благоприятного психологического климата в группе.

Виды учебной деятельности: решение поставленных задач; просмотр и обсуждение учебных фильмов, презентаций, роликов; объяснение и интерпретация наблюдаемых явлений; анализ проблемных учебных ситуаций; построение гипотезы на основе анализа имеющихся данных; проведение исследовательского эксперимента; поиск необходимой информации в учебной и справочной литературе; подготовка выступлений и докладов с использованием разнообразных источников информации.

Отличительная особенность программы

Представляемая программа основана на Методическом инструментарии наставника «Промробоквантум тулкит» (Шереужев М.А. – 2-е изд., перераб. и доп. – М.: Фонд новых форм развития образования, 2019 – 60 с.), имеет модульную структуру и заложенную возможность сетевого взаимодействия. Модули построены на практико-ориентированных инженерных и исследовательских проектах (индивидуальных или групповых), направленных на решение задач прикладного и фундаментального характера. Программа включает в себя модуль технический английский.

Организационно-педагогические условия

Реализация программы может быть осуществлена как на собственных ресурсах кванториума, так и при поддержке сетевых и индустриальных партнеров через сетевое взаимодействие.

Совместная деятельность участников образовательного процесса выстраивается на принципах эмоциональной значимости, открытости, деятельности, обратной связи и субъектности обучающегося.

Форма обучения - очная, возможно использование дистанционных образовательных технологий и электронного обучения. Занятия проводятся по группам. При реализации программы, могут быть организованы и проведены массовые мероприятия для совместной деятельности обучающихся и родителей (законных представителей).

Срок освоения общеразвивающей программы определяется в учебном плане, который является приложением и может обновляться по мере необходимости.

Режим занятий

Продолжительность одного занятия — 45 минут. Количество занятий в день, неделю определяется в соответствии с учебным планом (являющимся обновляемым приложением № 1), календарным графиком (являющимся обновляемым приложением № 2).

Планируемые результаты освоения образовательной программы представлены предметными (техническими) и универсальными компетенциями обучающихся.

Предметные компетенции (Hard Skills)

- понимание терминов «робот» и «робототехника», «конструктор»,

«объект управления», «управляющая система», «исполнительная система», «сенсорная система», «зубчатая передача», «повышающая/понижающая передача»;

- знание и понимание состава и структуры типовых конструкций промышленных роботов;
- знание и понимание состава и структуры приводов для промышленных роботов;
- способность расчёта требуемой рабочей области манипулятора при выполнении технологической операции;
- способность подбора необходимого рабочего органа и оснастки для выполнения простейших технологический операций;
 - способность запрограммировать робота
- работа по предложенным инструкциям, их модернизация,
 составление собственных конструкций и моделей;

Универсальные компетенции (Soft Skills)

- навыки ведения проекта, проявление компетенции в вопросах, связанных с темой проекта, выбор наиболее эффективных решений задач в зависимости от конкретных условий;
- развитие критического мышления;
- проявление технического мышления, познавательной деятельности, творческой инициативы, самостоятельности;
 - способность творчески решать технические задачи;
- готовность и способность применения теоретических знаний по физике, информатике для решения задач в реальном мире;
- способность правильно организовывать рабочее место и время для достижения поставленных целей;
- развитие познавательных интересов обучающихся, умение ориентироваться в информационном пространстве, продуктивно использовать техническую литературу для поиска сложных решений;

- навыки командной работы;
- основы ораторского искусства.

Уровень сформированности и освоенности навыков выявляется в ходе защит учебных проектных работ.

По итогам обучения должно сформироваться представление о способе проведения научного исследования, актуальных задачах, самоопределение с областью дальнейшей проектно-исследовательской деятельности, продемонстрирована способность и готовность применять полученные знания на практике.

Формы аттестации

Промежуточная аттестация выполнения программы и степени усвоения материала производится с помощью выполнения кейсов.

Итоговой аттестацией является разработка и защита проекта в виде участия в внутригрупповых выставках, конкурсах, презентациях.

Системы оценки результатов освоения образовательной программы

Освоение программы на каждом уровне завершается защитой проектов.

Критерии оценки публичной презентации проекта:

- 1. Актуальность и значимость проекта (от 0 до 5 баллов).
- 2. Соответствие результата поставленной цели (0-5 баллов).
- 3. Уровень завершенности проекта (0-5 баллов).
- 4. Уровень самостоятельности при выполнении работы (0-3 балла).
- 5. Качество презентации проекта (оформление, дизайн) (0-3 балла).
- 6. Качество защиты проекта (устное выступление) и участие каждого в защите (0-3 балла).
- 7. Умение отвечать на вопросы и отстаивать свою точку зрения (0-3 балла).
- 8. Анализ научных и инженерных источников, конкурентных подходов к аналогичной или близкой задаче (0-3 балла).

Ученикам, успешно защитившим проект от 20 баллов и выше, посетившим 70% занятий по программе рекомендуется продолжить обучение на следующем уровне. Ученикам, набравшим по результатам защиты проекта менее 20 баллов, а также посетившим менее 70% занятий по программе рекомендуется выбрать обучение по другой дополнительной общеразвивающей программе ДТ «Кванториум».

По итогам освоения программы обучающийся получает сертификат об её освоении.

Методическое обеспечение реализации программы

Методы, используемые педагогом:

- демонстрация наглядного материала;
- изучение источников;
- мозговой штурм;
- исследовательский метод;
- кейс-метод;
- проектная деятельность;
- публичное выступление.

Учебный план

Название модуля	Количество часов в не-	Количество часов всего
	делю	
Промробо	4	72
Технический англий-	1	18
ский		
Итого		90

Модуль промробо

Содержание программы

Техника безопасности. Продолжение работы с конструктором Spike Prime. Знакомство с конструктором Mindstorm EV3. Знакомство с моторами и датчиками. Практические работы с пошаговыми инструкциями.

Конструирование и программирование роботов.

Учебно-тематический план

Модуль промробо

Содержание программы

Техника безопасности. Продолжение работы с конструктором Spike Prime. Знакомство с конструктором Mindstorm EV3. Знакомство с моторами и датчиками. Практические работы с пошаговыми инструкциями. Конструирование и программирование роботов.

Учебно-тематический план

Модуль «Spike Prime» – 32 часа

1. Содержание

Продолжение работы с конструктором Lego Spike Prime. Управляемое движение робота. Соревнования роботов.

		Количество часов		
№		Всего В том числе		
Π/Π	Тема		Теория	Практика
	Техника безопасности. По-			
	вторение пройденного.			
	Управляемое движение ро-	2	0,5	1,5
	бота по заданному марш-			
1	руту.			
	Свободное моделирование			
	на тему «робот-животное»	4	1	3
2	или «робот-растение».			
3	Система слежения.	2	0,5	1,5
	Следование по линии. Сла-	2	0,5	1,5
4	лом.	2	0,5	1,3
5	Игры с предметами.	4	2	2
6	Кегельринг.	4	2	2
7	Сумо.	4	2	2
8	Выход из лабиринта.	4	2	2
	Знакомство со счетчиками и	2	0.5	1 5
9	переменными.	2	0,5	1,5

	Движение по линии с двумя			
	датчиками. Подсчет пере-	4	2	2
10	крестков.			

Планируемые результаты: умение придумывать и конструировать роботов по заданию, умение работать в группе, умение представить свою работу, участие в конкурсах/соревнованиях.

Оборудование: Персональный компьютер, презентационное оборудо-

вание, конструктор Lego Spike Prime, манипулятор.

Модуль «Mindstorm EV3» – 32 часа					
Вволный урок Техника без-					
13	опасности.	0,5	0,5		
	Знакомство с конструкто-				
	ром. Несущие детали. Кре-	1,5		1,5	
1.4	пежные элементы. Колеса.	,-		7-	
14	Принципы крепления.				
	Механическая передача.				
	Виды механической пере-	2	0.5	1 7	
	дачи. Паразитные шесте-	2	0,5	1,5	
	ренки. Многоступенчатая				
15	передача. Запускаем волчок.				
	Конструирование одномо-	2	0,5	1,5	
16	торной тележки.		- ,-	7-	
	Игра-соревнование «перетя-				
	гивание каната» или «меха-	4	1	3	
	ническое сумо». Анализ	-	1		
17	конструкции победителя.				
	Шагающие роботы. Сборка	2	0,5	1,5	
18	по инструкции.				
19	Свободное моделирование.	2	0,5	1,5	
20	Изучение датчиков.	2	0,5	1,5	
	Управление двухмоторной		1		
2.1	тележкой. Использование	2	0,5	1,5	
21	датчиков.				
	Программирование мобиль-	2	0,5	1,5	
22	ного робота. Движение по квадрату.	2	0,5	1,5	
	Ультразвуковой датчик. Пу-				
23	тешествие по комнате.	4	1	3	
	Датчик освещенности. Ке-	2	0.5	1 5	
24	гельринг.	2	0,5	1,5	
	Датчик освещенности. Сле-	2	0,5	1,5	
25	дование по линии.		0,5	1,5	

ı	,		1	
	Закрепление пройденного.	4	1	3
26	Свободное моделирование.		1	3
Пла	нируемые результаты: умени	е работ	ать в группе	, применение
получе	енных знаний на практике, учас	стие в со	ревнования	х.
Обору	дование: Персональный компн	ьютер, п	резентацион	ное оборудо-
вание,	конструктор Lego Mindstorm E	ZV3.		
Мод	уль «Проектная деятельност	ъ» – 8 ч	асов	
Разраб	отка и создание действующей п	модели	робота. Прог	граммирова-
ние зап	планированных функций. Тести	ировани	е. Разработк	а презентации
проект	та. Защита проекта. Показателы	ное выс	тупление.	
	Работа над проектом. Выбор	2	1	1
29	темы. Выбор команды.	4	1	1
	Работа над проектом. Кон-	2		2
30	струирование.	4		2
	Работа над проектом. Про-	2		2
31	граммирование.	2		2
	Работа над проектом. За-	2	1	1
32	щита проекта.	2	1	1
Планируемые результаты:				
умение придумывать и конструировать роботов, умение работать в				
группе, применение полученных знаний на практике, умение предста-				
вить свою работу.				
Оборудование: Персональный компьютер, презентационное оборудо-				
вание, конструктор Lego Mindstorm EV3.				
	Всего:	72	23	49

Модуль технический английский

Содержание программы

- 1. Развитие монологической речи.
- 2. Развитие разговорной лексики.
- 3. Алгоритмы в английском языке.

Учебно- тематический план

№ п/п	Тема	Количест	Количество часов		
		Всего	В том числе		

			Теория	Практика
1	Введение в материалы курса.	1	1	•
2	Из чего состоит робот? Множественное число. Неопределённые артикли.	1	1	
3	Что может сделать робот? Present Simple: утверждение и отрицание.	1		1
4	Где используются роботы? Профессии. Суффикс — er.	1	1	
5	Алгоритмы в английском языке. Условные предложения с if.	1	1	
6	Алгоритмы в английском языке. Условные предложения с when.	1		1
7	Алгоритмы в английском языке. ССП.	1	1	
8	История роботов. Числа.	1	1	
9	Роботы в популярной культуре. Специальные вопросы.	1		1
10	Бытовая техника и её функции.	1		1
11	Диалог: в магазине электротехники. Специальные вопросы.	1	1	
12	Наш дом и комнаты. Структуры There is/are.	1		1
13	Достопримечательности города. Возвратные	1	1	

	вопросы.			
14	Выбор телефона. Разговор в магазине техники.	1		
15	Части компьютера: принтер, колонки.	1	1	1
16	Работу на компьютере. Текстовые редакторы.	1		1
17	Работа в интернете. Поиск информации в интернете.	1	1	
18	Подведение итогов курса.	1	1	
	Всего:	18	11	7

Планируемые результаты

- -получение знаний о принципах работы роботов, истории их появления и места в современном мире.
- -совершенствование навыков разговорной речи.
- -совершенствование 4 основных навыка английского языка.
- -получение базовых навыков владения с программным обеспечением.
- -повторение основных грамматических тем.